If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15(t)=-16t^2+40
We move all terms to the left:
15(t)-(-16t^2+40)=0
We get rid of parentheses
16t^2+15t-40=0
a = 16; b = 15; c = -40;
Δ = b2-4ac
Δ = 152-4·16·(-40)
Δ = 2785
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{2785}}{2*16}=\frac{-15-\sqrt{2785}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{2785}}{2*16}=\frac{-15+\sqrt{2785}}{32} $
| 8-4r=16 | | 2.4=1.2w | | 73/8x=0 | | (38+(6x-6)/2=7x-4 | | y/3=1/2 | | 9b-3=5b-0.2 | | 3a-20=-10 | | -18x³-9x³-6=-27x³-6 | | v/30=10 | | x^2-15x=360 | | 2(3^2x+5)=54 | | 2x+8+3x-1=32 | | X^2/2=5x | | r/14=7 | | -2y+14=8 | | (2/3x)-4=20 | | B(X)=2x+63 | | 16m+-16m-4m-4=16 | | (5x+4)(4x+7)=0 | | 32-c=-12 | | (90-x)=5(x) | | -3v+-v=16 | | 6^(4x)=63 | | 2(3+3)-4(5x-3)=x(x-3)-x(x+5) | | 0.75x+2=0.125x-3 | | 16k-16k+3k=18 | | 10x+50+45=180 | | 12y+8=15 | | 50+45+10x=180 | | 64-32=4-13y | | 2(x-3/5)=2/7 | | n3=−19 |